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Abstract

This article deals with the interaction of co-rotating vortices, in configurations similar to those found in the extende
wake of typical transport aircraft. The fundamental process of vortex merging is analyzed and modeled in detail in
dimensional context, giving insight into the conditions for merging and its physical origin, and yielding predictions
resulting flow. Three-dimensional effects, in the form an elliptic short-wave instability arising in the initial co-rotating
flow, are described and analyzed theoretically. They are found to cause significant changes in the merging proces
earlier merging and larger final vortex cores. Illustrations from recent experimental, numerical and theoretical studies a
and the relevance of the results for applications to real aircraft wakes is discussed.To cite this article: P. Meunier et al., C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Aspects physiques de la fusion de tourbillons. Cet article traite de l’interaction entre tourbillons co-rotatifs, dans
configurations semblables à celles présentes dans le sillage proche et moyen des avions de transport. Le processus
de fusion des tourbillons est analysé et modélisé en détail dans une description bidimensionnelle, donnant accès à des
pour la fusion et son origine physique, ainsi qu’aux propriétés de l’écoulement résultant. Les effets tridimensionnels, so
d’une instabilité elliptique à courte longueur d’onde des vortex co-rotatifs initiaux, sont décrits et analysés théorique
sont à l’origine de modifications importantes de la fusion, comme un démarrage plus rapide du processus et un vortex
gros. Des illustrations d’études expérimentales, numériques et théoriques récentes sont données, et la pertinence d
pour des applications aux sillages réalistes des avions est discutée.Pour citer cet article : P. Meunier et al., C. R. Physique 6
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The merging phenomenon occurs when two vortices of the same sign with (almost) parallel axes, and within a
critical distance of each other, mix a substantial portion of their core vorticity to become a single vortex. Vortex merging
is principally a two-dimensional process, is one of the fundamental ingredients of fluid motion and plays a major r
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Fig. 1. Schematic of a typical vortex wake of a transport aircraft in high-lift configuration (flaps deflected). The scale in the downstream
is compressed by a factor between 5 and 10.

variety of situations, such as decaying two-dimensional turbulence, three-dimensional turbulence, and mixing layers,
few. Its potential significance covers various fields such as astrophysics, meteorology, and geophysics [1].

Vortex merging also plays an important role in the context of aircraft trailing wakes. A lifting aircraft wing generates
of longitudinal vorticity, whose structure depends on the lift distribution along the span, dictated by the geometry of t
and its different elements (flaps, spoilers, engines and nacelles, etc.). In the near field, the vortex sheet quickly rolls up
of discrete vortices, which subsequently interact and merge to form a single vortex behind each wing in the aircraft’s f

The wake vortex issue is particularly important for the traffic near airports, since aircraft follow each other closel
Fig. 1 shows schematically a typical trailing vortex system generated by an aircraft in take-off or landing configuratio
strong vortices of comparable strength are generated from the tips of the wing and the lowered flap. These co-rotatin
spin around each other by mutual induction, and merge into a single one over a distance of 5–10 wing spans. Issues re
merging of trailing vortices include the following questions: when and under which conditions do two given vortices m
other words: what is the time (distance) to merging? What is the role of three-dimensional effects? What are the chara
of the merged final vortex? These questions are all relevant for the dynamics and final decay of the counter-rotatin
pair in the far wake of an aircraft, involving turbulent dissipation and different three-dimensional instabilities, as discu
Jacquin et al. [2].

The present paper deals with aspects of the dynamics and merging of (nearly) parallel co-rotating vortices, such
observed in the extended near wake of a landing aircraft. In Section 2, the two-dimensional dynamics are reviewed
Experimental and numerical results will be used to analyze the different stages of merging, establish a merging
including a discussion of the physical origin of merging, and assess the properties of the final vortex. Section 3 is ded
three-dimensional effects, in particular a short-wavelength elliptic instability, which can arise in the co-rotating vortices
merging, and which can significantly modify the merging process and the properties of the final vortex. In Section
results are discussed in the context of realistic aircraft wakes, and a conclusion is given in Section 5.

2. Two-dimensional dynamics

In this part, we focus on the two-dimensional dynamics of two identical co-rotating vortices having a smooth v
distribution. Although such a configuration is a very simplified representation of the near wake of a realistic aircraft, it c
all the ingredients necessary to explore and understand the physics involved in vortex merging. It is also much closer
than the constant-vorticity patches, which were frequently used in previous numerical and theoretical studies (see, e.
[3], and references therein). Details on the experimental procedures and numerical methods used to obtain the results
here can be found, e.g., in Meunier et al. [4] and Le Dizès and Verga [5], respectively. Three-dimensional effects as
with instabilities will be discussed in detail in Section 3.

2.1. Interaction of two well-separated vortices

When two vortices are distant from each other, i.e., when their separation distanceb is large compared to their characteris
core radiusa, the large-scale non-viscous dynamics of the system are well-characterized by a point vortex approach
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Fig. 2. Temporal evolution of (a) the orientation and (b) the non-dimensionalized core size of a co-rotating vortex pair. Symbols
experimental results atRe= 742 (◦), Re= 1506 (�) andRe= 2258 (�). Thick lines represent results from direct numerical simulations (D
at Re= 500 (dash-dotted) andRe= 8000 (dashed). Thin solid lines correspond to the theoretical predictions of Eqs. (1) and (4) respec

vortices with equal circulationΓ remain separated by a constant distanceb0 and rotate around each other at a constant ang
speed

Ω = Γ

πb2
0

(1)

just as if all the vorticity of each vortex was concentrated in the respective vorticity ‘center of mass’, or vorticity centroi
This large-scale evolution is observed in many experiments, as demonstrated in Fig. 2(a), where the angular o

of the vortex pair is compared with the theoretical prediction (1) for different values of the Reynolds numberRe= Γ/ν

(ν: kinematic viscosity). The period of rotation of the vortex pair is thus a natural characteristic time scale of the
which can be used to define a non-dimensional convective time variable:

t∗ = t
Ω

2π
= tΓ

2π2b2
0

(2)

While rotating around each other, the vortices spread by viscous diffusion. If the core size of each vortex is defined
angular momentumJ [4]:

a2 = J

Γ
=

∫
S [(x − xc)

2 + (y − yc)
2]ω(x, y)dS

Γ
(3)

whereS is a surface containing the vorticity of the vortex, and(xc, yc) the location of the vorticity centroid, it increas
according to the lawa2 = 4νt , which can be rewritten in non-dimensional units:

a2

b2
0

= 8π2

Re
t∗ (4)

The temporal evolution of the core sizea is plotted in Fig. 2(b) for experimental and numerical results obtained at diffe
Reynolds numbers. It is in excellent agreement with the theoretical prediction (4). This linear evolution allows an unam
definition of the origin of time, which is chosen at the time where the backward extrapolated core size vanishes, indep
from the actual starting time of the experiments or the simulation.

Le Dizès and Verga [5] have analyzed in detail the viscous evolution of such a vortex pair. They showed that the
profile of each vortex tends to have the same viscous evolution as a single diffusing vortex. Each vortex converges
solution close to the Lamb–Oseen vortex whose vorticity and angular velocity profiles are given respectively by:

ω(r) = Γ
e−r2/a2; vθ (r) = Γ (

1− e−r2/a2)
(5)
πa2 2πr
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Fig. 3. Ratio of the inner strainsi at the center of the vortex to the outer strainse induced by the opposite vortex as a function of the dimension
core sizea/b0. The solid line corresponds to DNS atRe= 8000. Symbols correspond to the theoretical prediction of (6) whenΩ is calculated
for two vortices separated byb0 (◦) and two vortices separated by the real distanceb(t) between the vortices measured in the simulations (�).

The deformation of each vortex, which can be seen, e.g., in Fig. 4(a), is due to the presence of the other vortex. Ea
is indeed subjected to the straining field generated by the other vortex and which deforms its streamlines into ellips
deformations were analyzed by Le Dizès [6], who considered an axisymmetric vortex in an external rotating strain field
ratese. He observed that, due to the strain-vorticity interaction, the strain ratesi in the vortex center was a complex function
the vorticity profile, the angular rotation rate and the Reynolds number, which could even diverge under certain condit
a Gaussian vortex and large Reynolds numbers, a good estimate of the ratiosi/se versus the angular frequency was found to
given by the relation:

si

se
= 1.5+ 0.038(0.16− Ω/ω0)9/5 (6)

whereΩ/ω0 is the ratio of the angular frequency of the strain field and the vorticity in the vortex center. This expr
has been compared to data obtained from numerical simulations of vortex pairs [5], by taking forse the point-vortex estimate
se = Γ/2πb2, and forΩ/ω0, the estimate obtained from (1) and (5):Ω/ω0 = a2/b2

0. The results are reproduced in Fig. 3; th
show very good agreement. The importance of the inner strain ratesi will be demonstrated in Section 3. We will show tha
measures the strength of the three-dimensional instability.

2.2. Convective merging

The slow viscous evolution of the two distant vortices is suddenly modified when the vortex core sizea exceeds a crit-
ical fraction of the separation distanceb. For the two-vortex system, this critical ratio(a/b)c is always reached, due to th
progressive increase of the vortex core size by viscosity. However, in other configurations, it could be reached by th
of a background flow that could reduce the separation distanceb. This situation will again be discussed in Section 4. Wh
the critical ratio(a/b)c is exceeded, the two vortices rapidly deform, eject arms of vorticity and merge into a single v
Fig. 4 presents experimental dye visualisations and numerical vorticity fields of a pair of merging vortices, which rota
clockwise. The two vortices get closer to each other by advection and then coalesce into a single distribution of vor
a diffusion process. At the beginning of the merging, two strong filaments of vorticity are ejected and roll-up around t
vortex due to the differential rotation, leading to an axisymmetric vortex at late stages. This merging phenomenon
extensively studied by different numerical methods [7,8] and was also observed experimentally for geostrophic vortice
starting vortices [4], for aircraft wake vortices [10,11], and in mixing layers [12].

The qualitative phenomenon of merging can be quantitatively studied by measuring the separation distanceb between the
two maxima of vorticity. It is plotted in Fig. 5 as a function of convective time for different Reynolds numbers. This evo
allows to define four different stages in the merging process. The first stage corresponds to the quasi-stationary state
in the previous section, for which the separation distanceb remains constant, and for which the core size increases by vis
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Fig. 4. (a)–(c) Cross-cut experimental dye visualizations of two laminar co-rotating vortices, and (d)–(f) vorticity fields obtai
two-dimensional DNS. The snapshots are taken (a), (d) before, (b), (e) during and (c), (f) after merging.

diffusion of vorticity. The duration of this diffusive stage is proportional to the Reynolds number; it can be calculated us
as:

�t∗1 = (a/b)c
Re

8π2
(7)

Once the critical core size is exceeded, the vortex pair becomes unstable and merges, leading to a rapid decrease of th
distance. This stage appears to be driven by advection of vorticity, and its duration�t∗2 = 0.7 is thus fairly independent of th
Reynolds number. The numerical results in Fig. 5 show that, at the end of this stage, the merging of the vortices
complete: the separation distanceb does not vanish but remains at a value close to 0.25. This defines the beginning of
stage, in which the two vortices are next to each other but still have two separate maxima of vorticity, as can be s
in Fig. 4(e). The diffusion of vorticity, coupled to the rotation of the vortex center (close to a solid body rotation), le
an axisymmetrization of the vortex center in a time scaling asRe1/2, as has been explained by Bajer et al. [13] for vortic
perturbations at the center of a vortex. Numerically, the duration of this stage has been found to be:

�t∗3 = 0.0089Re1/2 (8)

In the fourth and last stage, the vortex diffuses again due to viscosity and its core size increases with time. This stag
described in more detail in the next section.

The merging phenomenon highly depends on the critical ratio(a/b)c of core size and separation distance at which it beg
The determination of the critical condition has been the subject of numerous works: through numerical simulations o
patches, it was found that(a/b)c = 0.3 (see Overman and Zabusky [8], Rossow [11], and Dritschel [14,15]), which was
firmed experimentally by Griffiths and Hopfinger [9]. Theoretically, Melander et al. [16] used the elliptic moment model (
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Fig. 5. Separation distance between two merging vortices as a function of the convective timet∗ for four different Reynolds numbers, obtaine
experimentally by Particle Image Velocimetry (symbols) and numerically by DNS (lines).Re= 742 (dotted line,◦); Re= 1506 (dash-dotted
line, �); Re= 2258 (dashed line,�); Re= 8000 (solid line).

to show that the vortex pair is only stable for(a/b)c < 0.326 and Saffman and Szeto [17] observed the numerical destabiliz
of two Euler equilibrium solutions for(a/b)c = 0.315. Recently, Meunier et al. [4] showed experimentally and theoretic
using Euler equilibrium solutions that for Gaussian vortices, the criterion is closer to(a/b)c = 0.22–0.24, which was confirmed
experimentally by Cerretelli and Williamson [18] and by direct numerical simulations by Le Dizès and Verga [5]. Howev
discrepancy comes from the difference in the vorticity profiles and all the results can be collapsed to(a/b)c = 0.22 if the core
size is defined using (3).

Although the empirical criterion of merging is now known fairly accurately, it is still unclear why exactly the two vo
merge. In order to analyze this issue, it is useful to look at the streamlines in the frame of reference rotating with the vo
because, in the limit of infinite Reynolds numbers, the vorticity contours should be equal to these streamlines (exce
vicinity of hyperbolic points). The characteristic streamlines (separatices) are shown schematically in Fig. 6. They d
plane into four different areas. Inside the dotted streamline, the fluid rotates around only one vortex center. Between t
and the blue streamline, the fluid rotates around the two vortices. Between the blue and the green streamline, the
‘ghost’ vortices rotating in the opposite direction. And outside the green streamline, the fluid is almost in solid body r
(For interpretation of the references in color, the reader is referred to the web version of this article.)

The theoretical results of Saffman and Szeto [17] and Dritschel [14] tend to prove that each vortex destabilize
the vorticity touches the center of the pair (named O in Fig. 6), as it is the case in Fig. 6(a). However, Melander et
showed numerically that it was possible to put some vorticity inside the exchange band without vortex merging. App
the two vortices start moving toward each other when the vorticity reaches the hyperbolic pointsH1 andH2, as it is the case
in Fig. 6(b). In this configuration, the vorticity is advected along the green streamlines on Fig. 6(b) and creates the fila
vorticity which are observed numerically and experimentally. This argument was used by Meunier [19] to explain the m
process: during the creation of these filaments, they are asymmetric as in Fig. 4(d) and thus create a velocity field that p
two vortices against each other. This hypothesis was verified quantitatively by Cerretelli and Williamson [18]. This ar
can be understood in a different way by saying that the ejection of the filaments create a large angular momentum,
enforce the vortices to get closer to each other to conserve the angular momentum of the system (which is true for
viscosity).

Using these ideas, a simple model can be constructed, by calculating the angular momentum of two vortices of coa

and separated by a distanceb: it can be estimated numerically by averaging the vorticity of two circular Gaussian vortic
core sizea on the streamlines of two point vortices separated byb. This picture is representative of real flows at high Reyno
numbers, since the vorticity is averaged on the whole streamline on a time scaling asRe1/3 (see Rhines and Young [20], Berno
and Lingevitch [21]), i.e., much faster than the growth of the core sizea which scales asRe1/2. This is indeed the case in th
numerical simulations far from the hyperbolic points. The angular momentum of the system can thus be calculated nu
as a function ofa andb:

J = Γ b2J̃ (a/b) (9)
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Fig. 6. Principal streamlines of two co-rotating point vortices in the rotating frame of reference. The vorticity contours (orange colorm
shown schematically for two vortices whose vorticity (a) remains inside the core of each vortex or (b) diffuses in the exchange band
the filaments. (For interpretation of the references in color, the reader is referred to the web version of this article.)

Fig. 7. (a) Rescaled angular momentumJ of two vortices of core sizea separated byb, which are axisymmetric (thin line) and whose vortic
has been averaged numerically along the streamlines of two point vortices (thick line); (b) theoretical prediction of the separation dis
function of the viscous time (solid line), compared to the numerical results (dashed line:Re= 8000 and dash-dotted line:Re= 1506).

whereJ̃ is a universal function shown in Fig. 7(a). The angular momentum grows with the ratioa/b, even faster than for two
vortices whose vorticity distribution is not averaged on the streamlines (shown as a thin solid line in Fig. 7(a)). This
from the fact that the streamline averaging creates the vorticity filaments, which increases the angular momentum. T
theoretical prediction of the separation distanceb, the expressions of the core sizea given by Eq. (4) and the expression of t
angular momentumJ as a function of time (given by Dritschel [14] for a two-dimensional flow):

J = Γ b2
0/2+ 8νΓ t (10)

can be introduced into Eq. (9), leading to the prediction ofb(t). The result is plotted in Fig. 7 and compared to the numer
results. This simple model predicts relatively well the time at which the separation distance starts to drop. However, it
predict a total merging of the vortices, but only explains why they come closer to each other up to 80% of the initial d
In order to fully explain the merging process, some other phenomenon, probably associated with a convective instabi
vortex system, has to be invoked. However, a theoretical prediction and description of such an instability are still missin
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2.3. Characteristics of the final vortex

After the convective phase of merging, the resulting vortex becomes axisymmetric on a time scaleRe1/2, which is small
compared to the viscous time scale. The merging and axisymmetrization processes can therefore be considered as in
on such a viscous time scale. Our objective is here to characterize the final axisymmetric vortex which results fro
processes.

Since the final vorticity profile will turn out to be non-Gaussian, it is convenient to define the vortex core size as the
amax at which the azimuthal velocity is maximum, divided by 1.12 (equivalent to the core sizea for a Gaussian vortex). Usin
this definition, the core size can be measured before and after merging; this is plotted in Fig. 8 for three different R
numbers as symbols and dashed lines. The square of the core size increases before and after merging linearly in tim
same slope 4ν (obtained for Gaussian vortices) and jumps abruptly during the merging stage. Although this stage lasts
low Reynolds numbers, a universal behavior is observed: the square of the core sizea2 increases by a factor 1.5 when measu
at the end of the merging stage. This behavior is more universal than the increase of a factor 2 given in the paper by
and Leweke [22], where it was measured at the beginning of the merging stage.

A prediction of a similar core size ratio had been made by Carnevale et al. [23], assuming that the maximum vorticωmax
and the energy (scaling asω2

maxa
4) are conserved: the energy of the final vortex is twice the energy of each initial vortex

the square of the core sizea2 thus increases of a factor
√

2 during the merging, which is close to the experimental and nume
value of 1.5.

However, this theory is in contradiction with the conservation of the circulation and the angular momentum. Indee
core size is defined as in Eq. (3) using the angular momentumJ and total circulationΓtot (shown as a thick solid line in Fig. 8
the core size increases by a much larger factor than when it is defined usingamax. This ratio can be predicted theoretically usi
the expression of the angular momentum given in (10) (plotted as a thin solid line in Fig. 8). The difference between th
measurements comes from the fact that the velocity profile is not Gaussian after merging: the final vortex contains a
an intense vorticity, surrounded by a background of low vorticity far from the center coming from the ejected filamen
theory of Carnevale et al. [23] predicts accuratelyamax (since the core contains most of the energy), and the theory usin
conservation of the angular momentum is linked to the filaments (since they contain most of the angular momentum).

As a consequence, none of the previous theories predicts in a satisfactory way the final velocity profile, which is p
Fig. 9. The theory by Carnevale et al. (shown as a dotted line on Fig. 9) predicts accurately the velocity and the circula
inside the core of the final vortex (since most of the energy is located in the vortex core). On the contrary, the theory u
conservation of the angular momentum (shown as a dashed line on Fig. 9) predicts accurately the velocity and circula
filaments, i.e. far from the center, but fails in the vortex core.

An alternative theory is thus needed to describe accurately the entire velocity profile of the final vortex. Since the
the filaments are created by two different mechanisms (fusion of two cores and ejection of vorticity), we assume that

Fig. 8. Dimensionless core sizea/b0 of the initial and final vortices for various experimental (symbols) and numerical (lines) results. Th
size is defined asamax/1.12 for the dashed lines and for the symbols, and it is defined as

√
J/Γ for the thick solid lines. The thin solid line

are predictions for Gaussian vortices.
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Fig. 9. (a) Velocity and (b) circulation profiles of the final vortex, rescaled using the total circulationΓtot of the flow and the core size of th
initial vortex before mergingai = √

4νt . The symbols show results from numerical simulations atRe= 8000 (◦) andRe= 1506 (�) and from
experiments atRe= 1506 (�). The dotted line corresponds to a Gaussian vortex with a core size predicted by the theory of Carnevale e
and the dashed line to a Gaussian vortex with a core size predicted using the conservation of the angular momentum. The thick
corresponds to the theory using two concentric vortices with different core sizes given by (11). The thin solid lines is a fit to a two-sca
defined by Fabre and Jaquin [24], given by (16).

be modeled separately as Gaussian vortices with different core sizes and circulations. We thus seek the vorticity pro
final vortex as:

ω = Γc

πa2
c

e−r2/a2
c + Γf

πa2
f

e−r2/a2
f (11)

where the four variables are: (Γc, ac) the circulation and size of the core, and (Γfil , afil ) the circulation and size of the wrappe
filaments. We now look for a solution which has the same energy, maximum vorticity, angular momentum and circulatio
initial pair of Gaussian vortices of circulationΓ , initial core sizeai , and separated byb. The conservation of the total circulatio
can be expressed:

Γtot = Γc + Γf = 2Γ (12)

The conservation of maximum vorticity means:

Γc

πa2
c

+ Γf

πa2
f

= Γ

πa2
i

(13)

The conservation of the angular momentum leads to:

Γca
2
c + Γf a2

f = 2Γ a2
i + Γ b2/2 (14)

After a straightforward calculation (see Appendix A), the conservation of the excess energy leads to:

Γ 2
c

[
−C − ln

(
ac

ai

)]
+ Γ 2

f

[
−C − ln

(
af

ai

)]
+ 2ΓcΓf

[
Kconc

(
ac

af

)
− ln

(
ac

ai

)]
= −2Γ 2C − 2Γ 2Ksep

(
b

ai

)
(15)

Here,C is a constant,Kconc is the mutual energy of two concentric vortices andKsep is the mutual energy of two vortice
separated byb, given in the appendix. For the critical ratio of core size and separation distance(a/b)c = 0.22, the four preceding
equations have a solution:ac = 1.14ai , Γc = 1.22Γ , af = 3.71ai andΓf = 0.78Γ . For these parameters, the square of

core size (defined as(amax/1.12)2) increases of a factor 1.46, in excellent agreement with the measured value of 1.5 (see
This corresponding velocity profile is plotted in Fig. 9 and is very close to the experimental and numerical velocity profi
in the core of the vortex and in the far field. The velocity is only 10% smaller than the measured value at the maximu
is due to a slight loss of energy during the merging stage, and a better agreement can be obtained (within the no
measurements) by assuming an energy loss of 10% during the merging stage. The agreement is even better for the
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profiles. Using this vortex model, the evolution of the final vortex is straightforward since the velocity profile correspon
Eq. (11) is a solution of the Navier–Stokes equations, if the squares of the core sizes increase linearly in time.

The final velocity profile can be also fitted by a two-scale model described by Fabre and Jacquin [24], which conta
fitting parameters (the circulationΓtot being equal to 2Γ ). The best fit, shown in Fig. 9 as a thin solid line, is given by:

vθ (r) = (a2/a1)α Γtot/(2πa1a2)

[1+ (r/a1)4](1+α)/4[1+ (r/a2)4](1−α)/4
(16)

with α = 2/3, a1 = 1.12ai anda2 = 4.5ai . This vortex model is useful since it was shown to be characteristic of airp
vortices, and was analyzed in detail with respect to three-dimensional instabilities [24].

To conclude, in this section, we have described the flow of two co-rotating vortices before merging, we have det
the empirical criterion for merging and we have also characterized the final vortex. However, these analyses have b
for a two-dimensional flow, which is valid representation of real flows only at low Reynolds numbers (Re< 2000). When
the Reynolds number increases, the flow can become three-dimensional through instabilities and turbulence, which c
modify the merging phenomenon. The merging at high Reynolds numbers will be presented in the following section.

3. Three-dimensional dynamics

For large Reynolds numbers, the two-dimensional flow obtained by the interaction of two co-rotating vortices befo
merging forms a quasi-steady solution in the frame rotating with the vortex pair. In view of the complex streamline
(Fig. 6(a)), it is natural to address the stability characteristics of such a 2D solution, with respect to three-dimensional
tions.

For two counter-rotating vortices, three-dimensional stability studies were started in the 1970s. Crow [25] showed th
of counter-rotating vortices is unstable with respect to a long-wavelength instability. This instability which is now kn
play an important role in the dynamics of the far wake, leads to the reorganization of the vortices into vortex rings. Lew
Williamson [26] demonstrated that this instability can be mixed with a short-wavelength instability associated with the
character of the streamlines in the vortices.

When the vortices are co-rotating, Jimenez [27] proved that the long-wavelength instability obtained by Crow co
be active. By contrast, the short-wavelength elliptic instability is present, as first evidenced by Meunier and Leweke [
following section will be concerned with the description of its characteristics in a system of two co-rotating Gaussian v

The streamline pattern also exhibits hyperbolic points. Near these stationary points, vorticity can be locally incre
stretching. In mixing layers and wakes, during their three-dimensional transition, this hyperbolic stretching mechanism
to participate in the formation of ribs aligned along the stretching direction between successive vortices. For two
vortices, as those considered in the previous section, there exists no evidence of such ribs. Yet, it cannot be discard
realistic configurations, notably when a vortex sheet is still present between the vortices, that the local growth near h
points could contribute to the global growth of a three-dimensional instability modes, in particular those associated
elliptic instability.

3.1. Elliptic instability

In this section, a short description of the elliptic instability which develops in a co-rotating vortex pair is given. A
detailed account can be found in Le Dizès and Laporte [29] for the theoretical aspects and in Meunier and Leweke [2
experimental results.

Experiments and direct numerical simulations show that, when the Reynolds number exceeds approximativelyRe≈ 2000, a
three-dimensional perturbation grows spontaneously in the vortices before their merging. This instability, which is illus
Figs. 10(a) and 11(a), is characterised by a sinuous deformation of each vortex in two parallel planes. Moreover, the pe
is found not to propagate and to have a well-defined wavelength which scales with the core size. Its transverse structu
that it breaks the mirror symmetry of the two-dimensional system (Figs. 10(b) and 11(c)). Figs. 12(a), (b) show the axial
of the perturbation alone obtained in experiments and in numerical simulations, respectively. It has a dipolar shape o
approximatively 45◦ with respect to the line connecting both vortices.

These instability characteristics are typical of what is now called an elliptic instability (see the review of Kerswel
It has also been observed in counter-rotating vortices [26], in vortex rings [31], in elliptically deformed cylinders [32]
also expected to take part in the three-dimensional destabilization of parallel shear flows [33] and wakes [34]. The
characteristic of all these flows is the presence of elliptically deformed vortices. The instability mechanism was under
Pierrehumbert [35] and Bayly [36], who demonstrated that any elliptic uniform flow was generically unstable with res
short-wavelength perturbations in a non-viscous flow. In the present case, the base flow in the frame co-rotating with t
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Fig. 10. Elliptic instability of a co-rotating vortex pair. Dye visualizations from experiments in (a) a side-view and (b) a cross-cut se

Fig. 11. Elliptic instability characteristics. Perspective view of the vorticity isosurfaces obtained by: (a) Direct Numerical Simula
co-rotating vortices; and (b) the theory in a single vortex as combination of the underlying vortex with two Kelvin wavesm = −1 andm = 1.
(c) Cross-cut axial vorticity obtained from experiments withRe= 3450.

pair is elliptic near the center of each vortex. The base flow streamfunction can be written in polar coordinates centere
vortex, near its center, as

Ψ ≈ −(µ − Ω)
r2

2
− si

r2

2
cos(2θ + φ) (17)

whereµ = 2ω0 andsi are the angular velocity and the inner strain rate in the vortex center, andΩ is given by (1). The phas
angle is such thatφ ≈ π/4 if θ = 0 corresponds to the direction of the line connecting both vortex centers.

The streamlines defined by (17) are ellipses of eccentricityε = si/(µ − Ω). If one considers local perturbations near
vortex center, where the base flow is defined by (17), a general stability analysis can be performed, as shown by B
and Lifschitz and Hameiri [38]. For small elliptic deformation (ε � 1), an asymptotic estimate for the growth rate of
three-dimensional local plane waves

u = u eik(t).x−iωt (18)
0
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Fig. 12. Axial vorticity of the elliptic instability mode: (a) experimental results forRe= 3450; (b) numerical results using Large-Eddy Simu
tions (LES) forRe= 105 [37]; (c) theoretical prediction in a single vortex in which the perturbation is a combination of Kelvin wavesm = 1
andm = −1.

can be obtained [39] as

σ (local) =
√(

3µ − Ω

4µ

)4
s2
i

− (µ − Ω − 2µcosξ)2 − k2
z

Recos2 ξ
(19)

whereξ is the constant angle between the wavevectork and the vortex axis. This local growth rate estimate is maximum w
cosξ ≡ kz/|k| = (µ − Ω)/(2µ).

Le Dizès and Laporte [29] used the above formula for the growth rate of the elliptic instability for two co-rotating Ga
vortices. They were able to evaluate the local wavevector angleξ of the perturbation by performing a global analysis of
elliptical instability. Such an analysis was first performed by Moore and Saffman [40] and Tsai and Widnall [41]. The id
take into account the complete structure of the vortex. Each vortex possesses, when not deformed by the presence o
vortex, an infinite number of normal modes called Kelvin waves of the form

u = uK(r)eikzz+imθ−iωt (20)

whose axial wavenumberkz, azimuthal wavenumberm, and frequencyω satisfy a dispersion relationD(kz,m,ω) = 0. This
dispersion relation depends on the vorticity profile of the vortex. A description of those waves can been found in [42
Rankine vortex and in Fabre et al. [43] for the Lamb–Oseen vortex. For these two types of vortices, none of these w
unstable by itself. However, they can be resonantly coupled with each other when one considers the elliptic deforma
induced by the other vortex. Indeed, such a field can be written, in a fixed frame centered on one vortex, as a velocity c
of the form

U1 = V1(r)e2i(θ−Ωt) (21)

It can therefore couple two neutral Kelvin waves(kz1,m1,ω1) and(kz2,m2,ω2), if they satisfy the conditions of resonance

kz1 = kz2; m1 = m2 + 2; ω1 = ω2 + 2Ω (22)

In this description, the elliptic instability is thus interpreted as a resonance phenomenon of Kelvin waves with the strain
In most cases, there exist several pairs of Kelvin waves satisfying (22), but these configurations are not excited with
growth rate. It turns out that, for vortices such as the Lamb–Oseen vortex, the most unstable configurations satisfy a
property near the vortex center: they locally correspond to a combination of local plane wave of the form (18) if their fre
satisfies the additional conditions

ω1 = (m1 − 1)µ + Ω; ω2 = (m2 + 1)µ − Ω (23)

These two conditions are satisfied by the two symmetric and resonant Kelvin wavesm1 = 1, ω1 = Ω andm2 = −1, ω2 = −Ω

for a discrete number of wavenumbersk
(n)
z (Ω). The combination of these two waves forms a sinusoidal deformation in a

rotating at the angular velocity of the vortex pair. Fig. 12(c) shows the axial vorticity associated with the combination
first two resonating waves. It is in qualitative agreement with the experimental and numerical results shown in Figs. 1
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Fig. 13. Growth rate of the elliptic instability as a function of the axial wavelength (a) atRe= 2700 anda/b = 0.220, and (b) atRe= 105 and
a/b = 0.205. Growth rate is non-dimensionalized by the rotation period of the pair. Lines correspond to theory, black symbols to D
and gray symbols to experiments. From [37].

12(b), respectively. Fig. 11(b) shows a surface of constant axial vorticity of the total flow composed of the underlying
and the two resonant Kelvin waves. The same undulation as observed in Fig. 11(a) is obtained.

If one assumes that the growth of the two resonant waves is dominated by the local growth near the vortex ce
mula (19) can be used as soon as a connection between cosξ and the dispersion relation of the Kelvin modes has been m
This is possible by expressing the resonant Kelvin waves near the origin as local plane waves, which gives, for the mom = 1,
the relation

cosξ(n) = 1

2
− ω(n)(kz)

2µ
(24)

whereω(n)(kz) is thenth eigenfrequency of the Kelvin wavem = 1. The numbern denotes the index of the Kelvin wave. It ca
be associated with the number of radial oscillations of the velocity components of the Kelvin wave. The larger the in
more oscillatory the Kelvin waves structure is. As the maximum growth rate is obtained for small values ofω(n)/(2µ) (close to
Ω/(2µ) as prescribed by (23)), a good estimate can be obtained by a linear fit of the different branches for small freq
For the Lamb–Oseen vortex, we obtain the following relations

cosξ(n) = 1

2
− 2.26+ 1.69n − kza

14.8+ 9n
; n = 0,1,2, . . . (25)

If we non-dimensionalize the instability growth rate (19) by the convective time scale 2π/Ω , we finally obtain an expressio
of the form

σ∗ = π

√[
3

4
− 1

2

(
a

b

)2]4(
si

se

)2
− 4

(
b

a

)4[
1

2
−

(
a

b

)2
− cosξ(n)

]2
− 2π2(kzb)2

Recos2 ξ(n)
(26)

which, for Lamb–Oseen vortices, has to be used in combination with relations (6) and (25) forsi/se and cosξ(n). This formula
is compared with experimental and numerical results in Fig. 13. The quantitative agreement is surprisingly good. It pr
strong validation of the theory on the elliptic instability mechanisms described above.

3.2. Three-dimensional merging

For moderate Reynolds numbers (Re> 2000), experiments show that as soon as the elliptic instability develops, th
namics of the two vortices becomes strongly three-dimensional and departs from the two-dimensional dynamics des
Section 2. When the amplitude of the instability mode has reached sufficiently large values, a complex three-dimensio
ing process of the vortices begins. It leads to the formation of a single vortex with specific characteristics. The three-dim
merging process is much more complex than in two dimensions, as illustrated in Figs. 14(a)–(d). A strong disorder w
scales appears in the merging region, and three-dimensional secondary filament structures are ejected far from the v

The three-dimensional merging process starts earlier than in two dimensions. This is in agreement with the me
discussed in Section 2: the instability deforms the vortices and can then move vorticity across the separatrix connec
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Fig. 14. Late stages of the elliptic instability after merging. Dye visualisations (a) in a sideview and (b) in a transverse section. (c), (d)y
isosurfaces from DNS, in perspective view and in a section. From [37].

outer hyperbolic points (see Fig. 6). When this occurs, the vorticity is carried away outwards along the outer streamline
vortices then must get closer in order to conserve their angular momentum, and the merging process starts. In the ex
three-dimensional merging has been found to occur for values of(a/b) as small as 0.19 which has to be compared with
critical two-dimensional value of 0.22.

After the merging, the final vortex reorganises into an axisymmetric structure. As for two-dimensional flow, the v
profile of this structure is not Gaussian, but a core size can still be defined from the radius at which the azimuthal
reaches its maximum. Fig. 15 shows the evolution of the square of the core size as a function of the viscous time for b
with and without instability. With instability, we see that not only the merging process starts earlier, but it also leads to
vortex. The core area is multiplied by a factor of 3.5 during the three-dimensional merging, while only a factor of 1
observed in the two-dimensional case.

The maximum velocity of the vortex is also smaller in the presence of the instability, it is less than 2/3 of the value without
instability. The velocity profiles are shown in Fig. 16. This is mainly due to a large decrease of the maximum vorticity by
of about 2.5, whereas it was conserved in the two-dimensional case. However, if we assume that the other conserv
are still valid in three dimensions (circulation, energy and angular momentum), the profile of the final vortex can be p
for the case shown in Fig. 16, using the vortex model composed of two concentric Gaussian vortices, as defined in (
the following parameters:ac = 2.1985,Γc = 1.9315,af = 13.34 andΓf = 0.0685. This prediction is in good qualitativ
agreement with the experimental results, although a better agreement can be found using the two-core vortex defin
with α = 2/3, a = 1.9 anda = 6.
1 2
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Fig. 15. Temporal evolution of the square of the non-dimensional core size. In the presence of the instability (open symbols), mergin
earlier and leads to a larger core than in the absence of the instability (filled symbols). Experiments:Re= 1506 (•); Re= 3350 (◦); Re= 5000
(�,�). Two-dimensional numerical results:Re= 8000.

Fig. 16. Final azimuthal velocity (a) and local circulation (b) after the merging of the two vortices without instability (◦) at Re= 1506, and
with instability (�) atRe= 3350, obtained from experiments. Thin solid and dotted lines correspond to a fit using the two core model (1
dashed line corresponds to a Gaussian vortex with conservation of circulation and angular momentum. The thick solid line correspo
concentric Gaussian vortices (11) with conservation of circulation, angular momentum and energy and a 60% loss of maximum vorti

The three-dimensional merging initiated by the development of the elliptic instability has been obtained in numeric
lations up toRe= 5 × 104. For larger Reynolds numbers and smaller initiala/b, a different evolution has also been observ
(F. Laporte, private communication). Under certain conditions, the elliptic instability has been seen to saturate and, aft
sient disordered regime, leave the flow with two vortices, which are still distinct, but have much larger vortex cores. The
instability was then observed to develop again, up to the beginning of the three-dimensional merging process as seen
Reynolds numbers. No systematic study of this two-step three-dimensional merging has been performed, so it is difficu
the parameter range for which it is expected to occur. In particular, it is not excluded that, for even larger Reynolds
and smaller initiala/b, more than two steps of elliptic instability growth and saturation could be needed to reach the o
merging.

The weakly nonlinear theory of the elliptic instability [44,45] provides some insight into the dynamics at large Re
numbers. For infinite Reynolds numbers, the theory predicts that the sinuous deformation associated with the two
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Kelvin modesm = 1 andm = −1 grows in the plane oriented along with the direction of stretching, then nonlinear e
make this plane rotate toward the direction of compression such that the deformation stops increasing, then decrease
back to zero [45]. As soon as viscous effects are considered, the weakly nonlinear dynamics is different. The most
deformation is expected to spiral to a fixed point of finite amplitude of order

√
si/µ ∝ a/b. Although such a spiraling evolutio

has been seen for the elliptic instability developing inside a cylinder [32], no clear evidence is available for the vort
However, the saturation process has been observed, followed by a complex rearrangement in each vortex (proba
secondary instabilities) by which new straight vortices are formed. If one assumes that, by this process, the core siz
vortex grows by a fraction of the amplitude deformation, i.e., a fraction ofa/b, it is easy to imagine that, ifa/b is initially very
small, several instability cycles would be needed to reach the critical ratio required for merging.

In conclusion, we have seen in this section that three-dimensional effects due to elliptic instability of the vortex cores
modify the merging process of co-rotating vortices. Three-dimensional merging sets in earlier (for smaller rescaled co
than in two dimensions, it produces a more turbulent and larger final vortex, with greatly reduced maximum swirl veloc
main characteristics of the final vortex can be predicted using a simple model involving the basic physical conservatio

4. Discussion

In this paper, we have considered the temporal dynamics of two identical co-rotating Gaussian vortices without ax
This constitutes a very simple idealization of the near-wake dynamics of the vortices generated by a wing. In this se
want to identify, as far as possible, the differences between the vortices in the near wake of an aircraft and our mode
to determine the impact and relevance of the results presented in the previous sections for applications. This will al
discuss a few possible extensions of the theory to more realistic configurations, and to address some open issues.

The first difference to be pointed out is the fact that a flapped aircraft wing does not generate two ‘nice’ identical G
vortices. Even if two dominant vortices exist behind each wing, they are probably not identical, and they exhibit a large
region outside their viscous core, due to the roll-up of the vortex sheet. In addition, these two vortices may also be su
by other vortices, which are generated by various elements on the wing. These other vortices are expected to affec
dimensional dynamics of the vortex pair. Indeed, as soon as a third vortex is present, the two dominant vortices can
to each other due to the velocity field generated by this third vortex. The two vortices could therefore merge quickly
their initial core size(a/b) was very small. This scenario has not been considered above, where merging was alway
thickening of the vortex cores by either viscous diffusion or instability. It may be important in real configurations.

It is also worth mentioning that merging is not the only possibility of strong vortex interactions. When a small vorte
close to a strong vortex, it is stretched and transformed into a vortex sheet which is wrapped around the larger vor
so-called straining phenomenon has been studied by Dritschel and Waugh [46,47] among others. It contributes in pa
the reorganization processes of the very near wake, during which the smallest vortices are wrapped around the larges

The two-dimensional conditions for straining and merging are expected to be influenced by three-dimensional inst
In Section 3.1, we have provided a theoretical model for the elliptic instability in two identical Gaussian vortices. W
two vortices possess different circulations or different core sizes, a similar model can be developed. Le Dizès and
[29] showed that a formula for the instability growth rate can be obtained in each Gaussian vortex. When the vortice
Gaussian, the elliptic instability is still expected to be active. Fabre and Jacquin [24] analyzed this possibility for the tw
model defined in (16), by considering such a vortex in a weak stationary strain field. They demonstrated that both th
rate and the selected wavelength depend on the profile parametersa1/a2 andα. They showed the following interesting feature
both the ratiosi/se of the strain rate in the vortex center, i.e., the maximum growth rate of the instability, and the width
unstable wavenumber bands increase with the ratioa2/a1. They also identified two different regimes according to the valu
α. When 0.5 < α < 1, the unstable wavelengths were found to scale on the inner core sizea1, with values ofkza1 comparable
to those for the Gaussian vortex. By contrast, forα < 0.4, the unstable wavelengths are much larger and scale on the
core radiusa2. It was argued that, for these parameters, the elliptic instability is not governed by the local destabiliza
the vortex center, but instead by the destabilization of the large intermediate region. Although only a stationary str
was considered, it is reasonable to believe that similar conclusions would be reached in the case of a rotating strai
particular, forα > 0.5, we expect that a model similar to that developed for the Gaussian vortex could be used for the pr
of the instability growth rate: expression (19) would still apply, but with modified relations forsi/se and cosξ . One can also
conjecture that the presence of a large intermediate region could favor merging, since more vorticity can be advected
along the outer separatrix. Stronger vorticity arms would then be ejected far from the vortices, which could lead to a p
vortex merging, as explained in Section 2.2. So far, however, there is no experimental or numerical evidence to con
expectation.

Wing-generated vortices are also characterized by an axial velocity component, due to a velocity deficit in the cor
with respect to the free-stream velocity transporting the vortices downstream. We now discuss some of the effec
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axial flow. First, it is important to note that axial flow does not modify the two-dimensional dynamics. Axial flow is pas
advected by the two-dimensional velocity and diffused by viscosity. Therefore, the large scale two-dimensional dynam
vortex deformation, the viscous diffusion of the vortex cores and two-dimensional merging should not be influenced
flow. By contrast, axial flow is expected to strongly affect the three-dimensional dynamics. For strong axial flow, vorti
become unstable with respect to an helical instability [48]. For a Batchelor vortex (Gaussian profiles of axial veloc
vorticity), this happens when the axial flow parameterW0, defined as the ratio of the maximum axial velocity difference
the maximum azimuthal velocity, exceeds approximatively 1. It is not excluded that such large values ofW0 could be reached
very close to the wing.

For small values ofW0, each vortex alone is expected to remain stable, so we can naturally address the question
the elliptic instability is still active in those cases. This question is currently the subject of active research. A few elem
response can be put forward. The first point to note is that the local theory of the elliptic instability should still apply
vortex center, if we move with the axial velocity of the center. This means that expression (19) for the instability grow
should be valid for the most unstable local perturbations located in the vortex center and moving with the flow. The
is that we have now no guarantee that such a local perturbation can be compatible with the expression of a global
mode. This can be seen by considering the effect of axial flow on the characteristics of the Kelvin waves. When th
axial flow, the helical Kelvin wavesm = 1 andm = −1 are no longer symmetric. They do not possess the same frequen
the same spatial structure. This implies that their combination no longer forms a stationary planar deformation. More
symmetry breaking has the consequence that the characteristics of the resonant waves do not satisfy the local cond
which permitted the use of the local theory. The result is that the excitation of the Kelvin wavesm = 1 andm = −1 may become
less efficient. This phenomenon has been analyzed in detail by Lacaze et al. [49] for a Rankine vortex with axial flo
demonstrated that other instability modes involving Kelvin waves with high azimuthal wavenumbers could become t
unstable, asW0 increases. For a vortex with a continuous profile, such as the Batchelor vortex, there is another effec
of the Kelvin waves which were involved in the resonance become damped and thus cannot be excited by the strain
situation has been studied by Lacaze [50] for a Batchelor vortex in a stationary strain field (see also [51]). He demo
that, because of the damping of the Kelvin wavem = 1, the resonance between the two wavesm = 1 andm = −1 disappears
asW0 reaches a critical value. However, other pairs of waves which were not excited in the absence of axial flow
excited by the strain field. In particular, Lacaze demonstrated that pairs of Kelvin wavesm = 0 andm = −2, and thenm = −1
andm = −3 were successively excited, asW0 increases. The instability mode composed ofm = 0 andm = −2 waves was
apparently observed in numerical simulations of a counter-rotating Batchelor vortex pair by Laporte [52]. This obs
has been recently confirmed (K. Ryan, private communication), and a quantitative comparison with the theoretical
currently underway [53]. An analysis of these new instability modes in the case of co-rotating vortices is highly de
notably to determine their impact on the vortex merging phenomenon.

To close this section, we wish to address the effect of another important difference between real wake vortices
vortices studied in this article. Wake vortices evolve spatially, whereas we have considered the temporal evolution o
vortices. We thus have to address the question whether our results can be applied locally in the frame moving with
streamU as if the temporal dynamics were just advected at a constant speed. A priori, this is possible if the vortex sys
be considered as locally parallel. This requires that the characteristic streamwise evolution length, which can be eva
L = Utc ≈ 2π2b2U/Γ if we take for tc the turnover time of the two vortices, is large compared to the largest charact
transverse scale, given by the separation distanceb. In practice, the ratioL/b is larger than 30 for typical configurations, so
is reasonable to consider the spatial interaction of the two vortices as locally parallel. The two-dimensional merging o
a time scale comparable totc , so it should also be relevant for the spatial evolution.

Concerning the three-dimensional evolution, one also has to verify that the characteristic instability wavelength
compared toL. This is of course satisfied for the elliptic instability as it scales on the core sizea, which is smaller thanb. As
spatial evolution is considered, one should also analyze the spatio-temporal stability properties of the elliptic instabi
has been done for a model of counter-rotating vortices by Fabre et al. [54]. They showed that the elliptic instability
convective and that spatial growth rates can be deduced from temporal growth rates by a Gaster transformation, i.e., by
that the temporal mode is advected at the mean speedU . We expect similar conclusions for co-rotating vortices.

Finally, note that temporal results may not be relevant everywhere. In the very near wake, the dynamics is domi
straining and vortex sheet roll-up which occur on a faster time scale thantc. In this region, the locally parallel approximatio
is not expected to apply. Consequently, the very near wake characteristics are poorly described by a two-dimensiona
approach.

Fig. 17 shows the development of a short-wave perturbation on a spatially evolving vortex system with characteris
to a real aircraft wake (Re= 106), a result obtained by Laporte [52] using Large–Eddy Simulation. It illustrates that el
instability of co-rotating vortices and the associated three-dimensional merging are indeed relevant for realistic applic

One may mention that one aspect involved in the dynamics of real aircraft wakes has been completely excluded her
the influence of the atmosphere. The wake system of a flying aircraft, especially in the vicinity of airports, i.e., relative
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Fig. 17. Illustration of three-dimensional merging in a spatially evolving flow, representing a realistic aircraft wake. Vorticity contou
LES atRe= 106 [52].

to the ground, is exposed to the influence of the surrounding atmosphere or atmospheric boundary layer. The effec
shear, stratification and atmospheric turbulence are particularly important (see, e.g., Holzäpfel et al. [55] and Mokry [5
overview).

5. Conclusion

In this paper, we have treated fundamental aspects related to the interaction of co-rotating vortices and the phe
of vortex merging. The basic two-dimensional analysis gave insight into the different phases of merging and their R
number dependence. Simple models were presented, involving the basic conservation laws for circulation and energy
us to understand the physics of merging and to predict the properties of the final vortex resulting from this process.
presented in detail a three-dimensional short-wave instability linked to the mutual elliptic deformation of the vortic
strongly interfering with the two-dimensional merging. Its effects include a premature merging, a faster increase in co
and a lower maximum swirl velocity for the final vortex, properties which are of potential interest in the context of wake
hazard reduction. Although the configurations considered in this paper may seem a somewhat severe simplification o
aircraft wakes during takeoff or landing, they nevertheless contain the most important features needed to understand t
involved. The relevance of these results for applications were discussed, and it is anticipated that many of the conclusio
here will in some form carry over to the applied situation.
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Appendix A

We wish to calculate the energy of the two-dimensional flow before and after merging. Before merging, the flow is m
two Gaussian vortices with circulationΓ and core sizea , which are separated by a distanceb. After merging, the flow is made
i
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of two concentric vortices with circulationsΓc andΓfil and core sizesac andafil . Since the total circulation is non zero, th
kinetic energy of the flow is infinite and we need to use the excess kinetic energy, defined as:

Ke = lim
R→∞

∫
r<R

v2

2
dS − Γ 2

tot
4π

ln
R

L
(A.1)

In this definition,L is a characteristic length scale of the flow, and should be identical before and after merging. W
chooseL = ai to simplify the calculations. Moreover,Γtot is the total circulation of the flow and must be equal before and a
merging. It is here equal to 2Γ and toΓc + Γfil .

Introducing the velocity profile of two concentric Gaussian vortices into (A.1), it is easy to derive the energy of th
after merging:

Kafter= Γ 2
c

[
−C − ln

(
ac

ai

)]
+ Γ 2

fil

[
−C − ln

(
afil

ai

)]
+ 2ΓcΓfil

[
Kconc

(
ac

afil

)
− ln

(
ac

ai

)]
(A.2)

where,C is a constant defined as:

C =
1∫

0

(1− e−r2
)2

4πr
dr +

∞∫
1

e−2r2 − 2e−r2

4πr
dr ≈ 4.6131× 10−4 (A.3)

andKconc(ac/afil ) is the mutual kinetic energy of two concentric vortices given by:

Kconc

(
a1

a2

)
=

1∫
0

(1− e−r2
)(1− e−r2(a1/a2)

2
)

4πr
dr +

∞∫
1

e−r2
e−r2(a1/a2)

2 − e−r2 − e−r2(a1/a2)
2

4πr
dr (A.4)

To calculate the energy of the flow after merging, it is easier to use the definition of the kinetic excess energy using the
and the streamfunction:

Ke = 1

2

∫
Ψ ω dS (A.5)

This definition is equivalent to Eq. (A.1) only if the constant of the streamfunction is chosen such thatΨ is equivalent to
−(Γtot/2π) ln(R/L) whenR tends to infinity. For two vortices separated by a distanceb, the cross terms can be estimat
by assuming that the streamfunction of one vortex is almost constant in the core of the opposite vortex, which lea
approximation of the excess kinetic energy before merging:

Kbefore= −2Γ 2C − 2Γ 2Ksep

(
b

ai

)
(A.6)

where the mutual kinetic energy of the two vortices is given by:

Ksep

(
b

a

)
=

b/a∫
1

1− e−r2

4πr
dr +

∞∫
1

e−r2

4πr
dr (A.7)

This approximation is valid to six decimals for the critical merging ratio ofa/b = 0.22 and is accurate within 0.5% up
a/b = 0.4. Equating (A.2) and (A.6) leads to the conservation of the energy given in (15).
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